
NESAP Project: XGC & WDMApp on Perlmutter

A. Scheinberg1, P. Lin2, S. Ku3, K. Huck4, S. Ethier3,
D. Kulkarni2, CS Chang3

NERSC GPUs for Science Day

October 25, 2022
1Jubilee Development
2Lawrence Berkeley National Laboratory
3Princeton Plasma Physics Laboratory
4University of Oregon

2 Exascale Computing Project

XGC introduction
• Tokamak plasma physics code specializing in edge physics and realistic geometry

• Gyrokinetic (i.e. 6D à 5D via analytic reduction using gyro-averaging)

• Particle-in-cell with an unstructured 2D grid and structured toroidal dimension

• Domain decomposition: toroidally sliced, then each MPI rank handles a subset of
the grid

Charge scatter

Field solve

Electron push (x6-60)
Ion push

Shift particles to domain

Collisions
Sources
Diagnostics

Tokamak cross-section

Rank 0

Rank 1

Etc.

3 Exascale Computing Project

ECP and the Whole Device Model (WDMApp)

• The WDMApp is an Exascale Computing Project (ECP) application

• Couples XGC with a core code (GENE or GEM) for ”whole device modeling”

• The vast majority (>90%) of time spent is spent in XGC, so its optimization is most critical

4 Exascale Computing Project

XGC engineering challenges
• A wide array of physics features and modes must be supported, e.g.:

– Delta-f (perturbation from Maxwellian) and full-f
– Electrostatic (magnetic field perturbations due to plasma ignored) and electromagnetic
– Axisymmetric (“XGCa”)
– Impurities
– Neutral particles with atomic cross-sections
– Coupling (GENE, GEM, XGC, in-situ analysis)

• These different modes of operation can drastically alter landscape of performance bottlenecks

• Physics in constant state of development
– Some changes are modular additional features

• e.g. new sources
– But others are (sometimes fundamental) structural modifications, e.g.:

• Split-weight scheme
• Stellarator
• 6D

• Multirate timestepping
• Time telescoping
• Implicit timestepping

5 Exascale Computing Project

Target architectures

Machine Cori KNL Summit Perlmutter Frontier Aurora

Testbed Crusher Florentia

Vendor Intel Nvidia Nvidia AMD Intel

“Native” language Cuda Cuda HIP SYCL

GPU resources per rank 1 V100 1 A100 ½ MI250X NDA

Host memory per rank 96 GB 85.3 GB 64 GB 64 GB NDA

Device memory per rank 16 GB 40 GB 64 GB NDA

• Some calculations are better off distributed among compute nodes on Cori (less memory per
rank, slower computation), but shouldn’t be distributed on Perlmutter (negligible computation time,
more memory available)

• Some data is better off stored on device memory if there is a lot of available device memory, but
must be moved between host and device if there is not

6 Exascale Computing Project

Exascale Preparation: Kokkos and C++
Kokkos: a portability abstraction layer that maps to OpenMP, Cuda, HIP, and SYCL

Pre 2019
Fortran code with 3 versions of
dominant kernels:
• OpenACC collisions and
Cuda Fortran electron push for GPUs
• Vectorized CPU version,
• Simple reference CPU version

2019
Fortran code using
wrappers and macros to
offload with Kokkos
• Tedious and inflexible
• Unclear for AMD/Intel GPUs

Present day
C++ code with non-critical
components left in Fortran

XGC Timeline

XGC

Kokkos

OpenMP Cuda HIP SYCL

7 Exascale Computing Project

XGC engineering approaches
• Portability with Kokkos

• Major focus on encapsulation/modularity

• Templating
– e.g., electron push and ion push are quite different (electrons subcycle and are drift kinetic, ions are

gyrokinetic) but use the same code
– Makes it much easier than before to experiment/swap out options

• Kernels
– Most major code components can be run independently
– They use the same code base - not copies. This means:

• They are never outdated
• They don’t require extra maintenance
• Work on the kernels can immediately benefit the code

• Testing/CI
– Unit tests, kernel regression tests, and run test on every pull request
– Automated physics testing still in progress – planned for bimonthly

8 Exascale Computing Project

Transition to C++
• Original attempt was to keep computation kernels in Fortran

– Wrappers for Kokkos/Cabana functionality
– Kernels launched with Kokkos::parallel_for() adapted to be compiled as both Fortran and Cuda Fortran

Continue with Fortran
– Feasible strategy for Cuda Fortran, but less

clear for AMD/Intel GPUs
– Tedious interfaces, limited functionality
– OpenMP+ offloading instead of Kokkos?

Transition to C++
– Better usage of Kokkos/Cabana
– Earlier compiler support on ECP target

architectures
– Lots of additional work to convert code
– Refactoring needed for offloading, might as

well convert at the same time

XGC (Fortran)
Kokkos interface (C++)

Kernel (Fortran)

XGC (Fortran)
Kernel (C++)

XGC (C++)
Kernel (C++)

9 Exascale Computing Project

“Like replacing every part of an airplane while in flight”
• Alternative in retrospect:

– Write C++ version separately,
from scratch?

Mid-air replacement
– Single code base

• Maintenance and improvements benefit current
production code

– Code kept up to date as new physics
capabilities integrated
• Already: EM physics, multispecies physics

– Code continually tested in production
conditions

New plane (C++ code from scratch)
– No time spent on Fortran interfacing
– Faster development since correctness not

critical to current production

10 Exascale Computing Project

Particle memory management: Reside on CPU or GPU?

All particles reside permanently on GPU
– No time spent on communication
– Number of particles per species limited by

GPU memory

Particles sent to device for each kernel
– More particles possible – only one

species needs to fit on the GPU at a time
– Extra communication time

Asynchronous streaming to device and back
– Communication costs hidden to some extent
– Particles not limited by GPU memory
– Multiple streams may complicate portability

Device
Host

Kernel ()

Device
Host

Device
Host

Kernel ()

Kernel () Kernel ()
Kernel () Kernel ()

• Summit and Perlmutter have different optimal memory management for particles
– Depends on available memory per GPU and per MPI rank, and communication rate

11 Exascale Computing Project

Summit performance

• Electrostatic simulation

• Steady improvement over time
as more kernels moved from
CPU (left) to GPU (right)

256 nodes, 50.4M particles/GPU
Jan 2019

12 Exascale Computing Project

Summit performance
Jan 2019

• Faster computation -> worse relative
weak scaling

• Deviation from weak scaling due to:
– Particle shift
– Electric field interplanar gather

(MPI_Allgather)

13 Exascale Computing Project

Perlmutter vs Summit

• Note: Electromagnetic simulation

• Electron push kernel is less important since it
is subcycled fewer times

• Additional grid operations (due to extra fields)

• ~2.1X faster than Summit (same # GPUs)

14 Exascale Computing Project

Perlmutter full-machine weak scaling

• GPU-aware MPI may improve this

• Simulation size too small – Perlmutter can fit
more per node

• Particle operations well-suited for GPU

• Will improve weak scaling by increasing
computation vs MPI communication

15 Exascale Computing Project

64 Cori KNL nodes 16 Perlmutter nodes Difference

Memory (host + device) 6.14 TB 6.66 TB 8%

Theoretical peak
FLOPS (DP)

192 TFLOPS 660 TFLOPs 3.4X

Time per step 369.2 s 41.5 s 8.9X faster

• How best to compare two very different machines? (Different memory layout, FLOPS,
GPUs, etc.)

• One option: Run the same simulation ”packed” into as few nodes as possible

• For this electrostatic simulation, we are utilizing Perlmutter resources are 2.6X better
than on Cori KNL

• Varies depending on simulation type: electromagnetic simulations are not so GPU-
optimized yet

Perlmutter vs Cori KNL

16 Exascale Computing Project

ECP testbed performance

• Comparing V100 vs GCD (i.e. ½ MI250X),
EM simulation is ~2.54X faster on Crusher
(Frontier testbed) than Summit

• Performance on Aurora testbed machine also
looking promising (not public yet)

• Our portability strategy seems to be working!

17 Exascale Computing Project 17

EM
🔆

New Physics on Perlmutter
• In many tokamaks, exhaust from plasma is directed along the separatrix toward divertor plates

• The divertor must be prepared to handle the heat of this exhaust – a wider impact area is better, so
divertor heat load width λq is an important parameter to study

• Using electrostatic
simulations, XGC has
matched observed λq for
other tokamaks, but its
predictions for ITER suggest
it will be in a new regime with
a higher-than-expected λq
(good news)

• Our fully electromagnetic
simulations on Perlmutter
suggest that EM effects will
increase λq even further

18 Exascale Computing Project

XGC simulation by S. Ku (PPPL) on Summit;
Visualization by D. Pugmire (ORNL)

18

Poincare puncture-density plot of magnetic field in
electromagnetic turbulence

New Physics on Perlmutter
• Homoclinic tangles have been observed

in the simulation, resulting in a more
diffuse stream of plasma from the X-point
to the divertor than previously thought

(These have been observed before but
only under special circumstances like
ELMS)

• Interventions may be possible to
strengthen these tangles and further
increase divertor heat load width

19 Exascale Computing Project 19
[Particles starting from SOL are not visualized for clarity of physics.
DIII-D simulation by S. Ku, PPPL; Visualization by D. Pugmire, ORNL]

New Physics on Perlmutter

20 Exascale Computing Project

Conclusion

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

Acknowledgements

• XGC is running on Perlmutter and generally performing well
– Still plenty of work to be done to optimize XGC (especially EM mode): offloading kernels to GPU via Kokkos,

improving MPI communication and load balancing, and keeping up with new physics additions

• Perlmutter is already enabling XGC simulations that are providing insight on
electromagnetic fusion plasma behavior and making predictions for ITER

